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We use central differences to solve the time dependent Euler equa-
tions. The schemes are all advanced using a Runge—Kutta formula in
time. Near shocks a second difference is added as an artificial viscosity.
This reduces the scheme to a first-order upwind scheme at shocks. The
switch that is used guarantees that the scherne is TVD. For steady state
prablems it is usually advantageous to relax this condition. Then small
oscillations do not activate the switches and the convergence to 2
steady state is improved. To sharpen the shocks different coefficients
are needed for different equations, so a matrix-valued dissipation is
introduced and cornpared with the scalar viscosity. The connection
between this artificial viscosity and flux limiters is shown. Any flux
limiter can be used as the basis of a shock detector for an artificial
viscosity. We compare the use of the van Leer, van Albada, minmod,
superbee, and the “average™ flux limiters for this central difference
scheme. For time dependent problems we need 10 use a small enough
time step so that the CFL is less than one even though the scheme is
linearly stable for larger time steps. Using a TVB Runge-Kutta scheme
yields minor improvements in the accuracy.  © 1893 Academic Press, Inc.

1. BASIC SCHEME

The basic elements of the scalar dissipation model con-
sidered i this paper were first introduced by Jameson,
Schmidt, and Turkel [2] using an explicit Runge-Kutta
time integration scheme. The space discretization is based
on central differences with an additional artificial viscosity.
In this section the basic scheme is briefly reviewed.

Consider the Euler equations in the form

W, +f.=0, {1)
where W is the three-component vector of conserved

variables, and fis the flux vector. The independent variables
are time ¢ and Cartesian coordinate x. In a cell-centered,

finite-volume method, (1} is integrated over an elemental
volume in the discretized computational domain. Equation
(1) can also be written as

W+ AW, =0,

where A is the flux Jacobian matrix defined by A =2//0W.

To advance the scheme in time we use a multistage
scheme. There are many ways of using Runge-Kutta
schemes; a popular version is that of [2]. A typical step of
this Runge-Kutta approximation to {1} is

Wm:__Wm!,ak?[Df“““~AV], {2)
X

where D is the spatial differencing operator and AV
represents the artificial dissipation terms. The derivatives of
the fluxes are approximated by central differences. In the
form presented here the scheme cannot have greater than
second-order accuracy in time for nonlinear problems. For
steady state problems the time accuracy is irrelevant and the
form of (2) requires only two levels of storage. If one wishes
to obtain higher accuracy in time for nonlinear problems,
then one can use any formula from standard numerical
ODE theory. In particular, the classcial Runge-Kutta
scheme will give fourth-order accuracy using four stages
but wili require more storage than {2). It is shown in [%]
that these schemes are TVD when the time dimension is
continuous, ie., a semi-discrete formulation. We will also
consider Runge-Kutta forms that preserve the TVD nature
of the semi-discrete version [6, 7]. In all cases, the spatial
accuracy is determined only by the accuracy of the operator
D to the dertvative.
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The dissipation terms are a blending of second and fourth
differences. That is,

AV = (D>~ D)W,
where
D*W=4_[(4, 1€ iy 4 1w

D“W:Aﬁ[(lul,fze(‘:—jl/z) A4 AW,

i

(3)
(4)

and A,, A_ are the standard forward and backward
difference operators, respectively. The variable scaling
factor A is chosen as

(5)

- 1 -
Aipip=slii+ 4ol

where A, is proportional to the wave speed. The coefficients
€'? and €'* are adapted to the flow and are defined as

2y (2]
“EE+I,"2"—K max(v,-, vi+l)a

(6)
& (4 2)
€%, =max [0, (k-7 izt

where x'» and x*" are constants to be specified.

The parameter v is a shock detector. We shall analyze
ways of defining v in detail in the next section. The purpose
of this second difference viscosity is to introduce an entropy-
like condition and to suppress oscillations in the neigh-
borhood of shocks. Ideally the value of v should be one
at shocks and be negligible in smooth regions of the flow.
The fourth-difference dissipation term is basically linear and
is included to damp high-frequency modes and allow the
scheme to approach a steady state. The second-order dis-
sipation contains a nonlinear term which is of higher order
in smooth regions. Hence, this term does not affect the
linear stability of the scheme. Near shocks it is reduced to
zero. For time dependent flows, the fourth-order dissipation
is not very important and x'* will usually be small or zero.

2. SHOCK DETECTORS AND FLUX LIMITERS

In order to see the effect of v we first define
(7

A review of modern schemes with flux limiters is presented
in [147] and hence we shall not go into great detail about
flux limiters for upwind schemes. A comparison of such
schemes for a scalar nonlinear problem is presented in [13].
As shown in [9] ¢ can be interpreted as a flux limiter,
although its properties for central difference schemes is
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slightly different than for upwind schemes. The value of ¢ is
usually taken as a function of », where

,,:M=‘_t;_ (8)
Uip1— U;

According to the TVD theory for a scalar equation in one
dimensien the artificial viscosity can sometimes be negative,
see (21). However, for multidimensional vector equations
with central differences we prefer to be conservative and
choose the artificial viscosity, €'*/, to be positive and so we
set

(9)

V= 11 _¢cen!rall'

Note, that in general v+ v. For the fluid dynamic
equations we choose the pressure as a representative of
the flow field. The artificial viscosity used in the original
algorithm was

_ |Bixt —2p;+pi_
pici+2pitp |

vy

(10)

and v, ,,, =max{v;, v, ;). We note that with this definition
of v that ¢ is not a function of ». We shall demonstrate in the
result section that this switch gives rise to oscillations in the
flow field.

In order to connect this artificial viscosity with flux
limiters we first consider the van Leer flux limiter given by

r4lr)+e

0‘5.-(”)=‘1~+—|rm,

(11)

where ¢ is added to prevent the switch from being activated
by noise. This ¢ is mainly needed for steady state calcuia-
tions. Then after multiplying (11) by |4, | we obtain

a4 )5,
O e Y

Reverting back to the notation of pressure and modifying
the ¢ term to remove |4 | we obtain

|piv1—2p;+ D]
[Pis1— Pil H1pi— picil +&

vi=il—g{r)l= (13)

For dimensional consistency we wish to choose & to depend
on the pressure. S0 we choose e=€(p;,+2p:;+ pi_1)
Substituting this into (13) we obtain

_ Ipi+1‘2Pi+Pi-1|
Pici—pil Hlpi—pia | +E(pip 1+ 20+ pioi)

(14)

Vi
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There is no special need to base the artificial viscosity
on the van Leer flux limiter. It is just coincidental that the
resultant viscosity v closely resembles the original artificial
viscosity, (10). Another alternative is the van Albada flux
limiter,

gur =11

14+r% (13)

We note that this limiter approaches zero for large values of
r, while most limiters approach two as r increases. Using
a similar derivation we find that the artificial viscosity
associated with the van Albada limiter is given by

((Pi+|“p1)2+(P:’Pr-t)2_(pi+l‘_Pf) )

. XApi— P ) — WP — PP — P

' ((p,+s*p;)2+(p,-—~p,-f‘)2 )
+€(piy+2p4pi))

(16)

There is a second version of the van Albada flux limiter used
in the literature,

r+r?
14+

gilr)= o<r< 1. (17)

Others limiters used are minmod,
¢, (r) = max(min(r, 1), 0),
and superbee

¢;(r)=max({min(2r, 1), min{r, 2), 0};

see [107. We shall also consider the “average” flux limiter

¢:(r)=minmod((1l + r}/2, 2 minmod(1, r}).

For each of these limiters there is a corresponding
“artificial” viscosity.

For an upwind flux limiter we have ¢{1/r)= (1/r) ¢(r).
Huynh [17] has shown that the resultant schemne is second
order if ¢'(1}=4. By (9) the effective @ ona Satisfies
0< ¢ =<1 so that the artificial viscosity v is positive. Note
that for upwind schemes v by {7) can be negative whenever
doing so does not destroy the TVD properties. This can
have both advantages and disadvantages. Upwind schemes
tend to have less dissipation, especially on coarse meshes,
than central difference schemes ¢ven with a matrix viscosity
because of this “anti-viscosity.” On the other hand, central
difference schemes frequently converge faster to a steady
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state because v is always positive. Combining (7) and (9) we

have

if ¢g<1,
if ¢>1,

r<l
r>1

banea=13"_,

With the van Leer and first Van Albada flux limiters one
finds that ¢(1/r) = ¢{r); i.e., it does not make any diflerence
in (8) if r is a forward difference over a backward difference
or a backward difference over a forward difference. For
smoothness we now want ¢'(1)=0. Of the above limiters
only the first version of Van Albada and superbee have this
property. This property gives a local second-order accuracy.
When the accuracy is only first order at shocks it still is not
known how this contaminates the global accuracy of the
approximation. It follows from the analysis of [ 1] that an
upwind scheme can be considered as a symmetric interpola-
tion followed by a upwind convection operator. A central
difference scheme can be represented as a downwind inter-
polation followed by a compensating upwind convection
and so the total operation is symmetric.

3. THE TVD PROPERTY

Consider the one-dimensional scalar conservation law

2 [, 01+ 2 f(ulx, 1)1 =0,
X

ot (18)

where

—w0 < X< oo, t=0.

Let v(f) = {v,(1}} be the approximation solution of {18) and
consider the semidiscrete equation

d 1 .
c_i}'vi(t)+52'; v —fioi]

1
= m [Qi 1/23 Ao, /2 g 12 Avi_ 1/2]

™

—ZI;[RH»UZA]UE-#I,Q_Ri71/2ﬂjvi~1/2] {19)

with

Av; 1y =(AV); 012 = 0 (1) — 0;(2).
A% is a third-difference operator defined as

A, 12 = U2t} =30, () + 3v,(¢) — v, -, (1)
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The terms on the right-hand side of (19) represent second-
and fourth-difference numerical dissipation terms, with x¥
a constant. Define

Si+l,‘2=Sgn(Avi+1,f2J’

where sgn represents the signum function. We first shift the
indices by one in (19} and subtract (19) from the resuiting
equation. We then multiply the result by 5,,,, and sum
over all i. Noting that s, ,,= +1,s0 5], ,,=1, and

Sivrp AV p=1dv 0]
Let TV denote the total variation as given by

TV =Z |AUJ'+1,'21-

We then obtain

d
EZ MUf+1,f2|

1
24x

Afivip
z iy 1/2(5.'— 12— Si432) -

|40, 4112
; aiip

. .
+§Zi_x Z Sivy2(Siv3n— 25 1p 510
i
X Q. 12 14Y; 12
?CH]
_E—Z (Sis32— 281512+ 5i212)
;

3
xRy 1/24 Ui 1/2-

We stress that the last term will not help for TVD. Its
purpose is to eliminate high frequencies and accelerate con-
vergence to a steady state. Hence, we want this contribution
to be zero. This can be accomplished if we demand either

Sivap— 254 e laak AT =0

or

R, 12= 0.
We are then left with

d 1
E(TV)= AZ_A; ‘ "Si+1;'2(5i+3,f2_si—1/2)

x Af:'+ 1/2

Av;
Avi+1,’2 | IHIZM

~ S8 32 =25 10t 5 1)

X Qi lAviy ) (20)
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Thus, a.sufficient condition that the total variation not
increase is that each term in the summation of (20) must be
positive. This means that the scheme is TVD if

—Sie12(Siv =28 1 p 5 1/2) Qi

Afi, 1/2

(21}
Av;

ZS8i12(Siv3n 8o 1/2)

This is the inequality obtained in [9].

When driving the solution to a steady state one frequently
finds that it is not advantageous for the scheme to be TYD.
The reason is, that with TVD schemes the switches are
frequently being turned an and off due to local noise. For
steady state calculations this causes the convergence to halt
at some error level and a limit cycle results in which the
residual osciflates about some level instead of decreasing,
To prevent this from occurring we wish to prevent the
switch from being activated for small oscillations or
small discontinuities. The inequality (21} was obtained by
demanding that the solution be TVD and so each term on
the right-hand side of (20) was negative independent of the
size of Af; . /Av; 1. Instead we shall only demand that
the solution be total variation bounded (TVB). Now, each
term on the right-hand side of (20) can be positive as long
as it is bounded by a constant times {4v,, | This is valid
for 0 <t < T. In theory this can prevent a steady state from
being reached as ¢ — oo, However, if the steady state is
reached then the solution is well behaved. Since s, ,,, is
equal to plus or minus one we want

Af;
—Q,-+1,2+—L*—“3<a (22)
AU:‘+1/2
for some constant o.
We shall choose
Af;
Qi+1,f2=vi+l,'2 ﬁ . (23)
This is similar to (5), (6} with kP =%, v, .=

max(v,,v;.,), and A=Af  ,/4v,,,,. We then rewrite
(23} as

4
fi+1,.’2 <o

(1 —Vu-uz) (24)

AV 415

Equation (24) demands a bound on the multiplication of
I — v with 4f/4v. Hence, if 4f/4v is small then we can aliow
v to be small. Only if 4f/Av is large do we need v —> 1. We
choose v to depend on the strength of the shock, dv. For
weak shocks Av is small and we can choose € in (14) near
one. For strong shocks 4v is large, so we want € to be small
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to make v a TVD switch. For the fluid dynamic equations
we replace the vector v by the scalar pressure, p.

To find such a v we use (14). When € =0 we obtain the
TVD switch (14) while with € = 1 we obtain a perturbation
of the original switch, (10) for transonic flows. This switch
ireats the two sides of the shock asymmetrically depending
on whether p; is to the left or right of the shock. Thus, we
replace it by

o= {Piv1— 2P+ pi_|
P — bt tpi—pici ) temax(p, 1, o pil 1)

In practice the switch that we use is

Pic1—2pi+ pi (]
((1 — €)1 pivy— pil +|Pi—Pr’—1“)
+e(pi+2pitpiy)

V:=

(25)

We wish to choose € automatically based on the shock
strength. One possibility for € is

[l'lin i—2r Fi-1rFir My s Fi— 7
6:{ (Pie2sPioss P pﬂpz)}, (26)
Max(p;_2s Piei> Pir Piv 1> Pi2)
where ¢ is a free parameter. A reasonable range is 6= 1 to
og=1.

For small osciliations p, does not vary much and so € is
slightly less than one. For large oscillations € is equal to the
relative jump across the shock. Consider a perfectly resolved
discontinuity going from p, to p, with pg < p, . Then,

vz___pif_pf“___’ 8={ﬁ} . (27)
(Pr.—pa)t+ep, P
Let
Pr
g=—
Pr

Combining these we find that
1
V=,
L+g°/(1—g)

Hence, for small ¢ {i.e., for large discontinuities) v ~ 1 — ¢°.
Hence for both very weak shocks and very strong shocks the
left-hand side of (24) is small, 1.e,, (1 —v) dv >0 as 4o =0
and also as Av — oo. This discussion has concentrated on
the theoretical basis of the algorithm. In practice the
formula (25) is used for transonic, supersonic, and hyper-
sonic flow regimes.

In this section we have written the flux limiters and artifi-
cial viscosity in terms of the pressure variable which is
appropriate for inviscid fluid dynamics. In the next section
we shall consider matrix viscosities. With a matrix viscosity
one can base the limiter in each characteristic field on a
different quantity.
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4. MATRIX VISCOSITY

In the above discussion we have discussed a scalar equa-
tion. In the original algorithm, this procedure was applied
to each equation with the same €. The coefficient 4 in (5) was
chosen as equal to the spectral radius ju) + ¢ while v was the
same switch that depended on the pressure, for all the equa-
tions. For time dependent flows this presents several dif-
ficulties, first as seen in the result section there is excessive
smearing since the same coefficient is used for all waves and
is proportional to the fastest wave speed. Second, pressure
is continuous across a contact discontinuity and so a
pressure based switch will not sense a contact. We therefore
replace the scalar dissipation with a matrix dissipation, i.e.,
A in (3.4) is now a matrix-valued function. We first define
a function of a matrix 4. We assume that 4 can be
diagonalized so that TAT ~! is diagonal. We wish to intro-
duce the absolute value of the matrix 4 in a way which is
computationally efficient. We consider the form of 7DT !
for an arbitrary diagonal matrix D where the columns of
T~' are the eigenvectors of A, the coefficient of the x
derivative in the PDE. We see that certain patterns reappear
in this form. We are then led to define our function as

A —1
far=a+ (2524 St E 45 |

2

A=A
2 E+(r—1) B,

28
+—5 (28)
where

2

u? — 1 1

3

E = % —u? u |,
HZ
T" _wH H

o,

I [
,_____...__\ /——'-\
N[, 8, ©

| ! =
2w

= —
\—d/
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Whenever the matrix 4 can be diagonalized, ie.,
D=T-'AT is diagonal then a function of the matnix is
defined by f(4)=Tf(D) T ™", and f(D} is the function [
applied to each element of the diagonal of D. Let the coef-
ficients 4,, 4,, and A, be functions of the eigenvalues of A.
If A, =u+c, Ay=u—c, 43 =u, then we recover the matrix
A. When the 1’s are the absolute value of the eigenvalues we
obtain the absolute value of the matrix 4. In general, A, 4,
and 4, should not be exactly equal to the eigenvalues of A
since at sonic points or stagnation points an eigenvalue
is zero and hence no artificial viscosity would be added.
Hence, the A’s have a lower limit of 0.2 |u + ¢). This proce-
dure also allows one to sclect different switches for each
eigenvalue. In particular we shall base the switch for the
nonlinear fields, with speeds A, and 1, on the pressure.
However, the pressure is continuous across a contact dis-
continuity. Hence, the switch for the linear field, 1, is based
on the temperature, T'= p/p. Putting these options together
we choose the #'s equal to €? and €™ times the limited
absolute value of the eigenvalues, see (3, 4).

5. RESULTS

The results were all obtained using a multistage
Runge Kutta scheme (2) to advance the solution in time.
For most of the computational results the orginal
Runge-Kutta coefficients (2] were used, o, =%, =1,
a;=1, 2, =1 Shu [6] introduced another set of coeflicients
to guarantee that the scheme is TVD in time but is only first-
order accurate. The three stage scheme has coefficients,
%, =3, &, =14, ;=1 while the four-stage scheme has coef-
ficients, o, = i, &, = 5, #3 = 3, &3 = 1. The more stages that
are used the larger the time step allowed by stability
requirements. However, we found that using larger time
steps introduced oscillations into the solution. In practice
we chose CFL =0.75, and so there was no advantage to
using the four stage scheme. Shu [7] also introduced higher
order schemes for time dependent equations that are still
TVB. These schemes can no longer be written in the simple
form of {2). Instead each stage requires the use of the
dependent variables and fluxes at previous stages and so
more information needs to be stored.

We solve the oné-dimensional Euler equations in the
domain 0<x<10. The initial conditions are u=0my/s,
T =300 K everywhere. The initial pressure is discontinuous
with a ratio of p=20for 0<x<5to 1 for 5<x <10 The
density and total energy are then calculated from the ideal
gas law with y=1.4.

We first consider the standard central difference algo-
rithm with a scalar viscosity and the original switch (10}
and the original Runge-Kutta coefficients with CFL = 0.75.
The first figure is a plot of density as a function of x at a
nondimensional time of 0.2. Large oscillations appear both
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between the rarefaction wave and the contact discontinuity
and between the contact and the shock. We also considered
the case that the switch (10) is based on density rather than
pressure. This does not make any basic change in the results
shown in Fig. 1. In Fig. 2 the density is plotted with the
standard switch replaced by the van Leer-based switch
(9, 11). The change in the switch has eliminated all oscilla-
tions since the scheme is TVD for the scalar case with this
switch [9]. There are still some small oscillations in the
rarefaction and the contact is very smeared. In Fig. 3 we
show the same case using the matrix viscosity and € = 0.008.
The switch for the nonlinear waves is based on the pressure
as before. Since the pressure is continuous across a contact
discontinuity, the switch for the entropy wave is based on
the temperature; although one could also use entropy. We
see from this figure that the smearing near the contact is
considerably reduced. Figure 3 was based on the shock
detector (12). We obtained similar results when the forward
difference multiplying ¢ was replaced by a central difference.
In practice we usually use (25). This requires the use of a
much smaller & to achieve similar results. All these test cases
use a pressure based switch for the acoustic waves and a
temperature based switch for the entropy and shear waves,
When one or both of these switches are based on the
density no noticeable differences are seen in the solution.
For boundary layers there should be a difference between
pressure based and density based switches. Also for iso-
thermal boundary conditions there is a sharp gradient in the

20

181 —— Exact Solution
soo Numerical Solution

16

14

p/(Po/R*T.)
=)

1 1

0.0 0.4

X/L

FIG. 1. Scalar viscosity with original switch.
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18} 4  — Exact Solution

soo Numerical Solution

¢.0 Q.2 0.4 Q.6 0.8 t.0
X/L

FIG. 2. Scalar viscosity with van Leer based switch.

18- —— Exact Solution
soe Numerical Solution
16
id
12 -
101
8 -
6 =
4l
2 |-
1 —_l — L i |
0.0 0.2 0.4 0.6 0.8 PO

X/L

F1G. 3. Matrix viscosity with van Leer based switch.

temperature near the wall and a temperature based switch
may be turned on even in the absence of any shocks.

Using the van Albada (1) based switch improves the
treatment of the sonic peint. The use of superbee for the
nonlinear wave introduced new oscillations as seen in Fig. 4.
This may be due to the fact that the superbee flux limiter is
“overcompressive” and so its use on the nonlinear fields
might create nonentropy satisfying shocks. For the linear
field this “overcompression” can only steepen the discon-
tinuity. We conclude, that for the central difference schemes
superbee should never be used for the nonlinear waves. The
resuits with minmod was similar to the van Leer viscosity
but with a slightly less sharp shock. In all cases the head of
the rarefaction wave was smeared out. In Fig. 5 we present
the density when superbee is used for the linear wave while
van Albada (1) is used for the nonlinear waves, We also
used these schemes with the € as given in (11). For the van
Leer limiter we could choose €=0.1 without significantly
degrading the results while for van Albada (1) we had to
choose € about 0.005. For the steady problems we can use
the van Leer limiter with e=0.1 and still get monotone
profiles. All the cases presented evaluate the artificial
viscosity after the first stage and then freeze it for the later
stages. If one reevaluates the artificial viscosity after each
stage then a large undershoot at the foot of the expansion
wave is introduced and there are increased difficulties at the
sonic point.

20t

181 —— Exact Solution
oao Numerical Solution

16|

p/(P/RT,)
o

al
51
Al
2}
L. l . : .
0.0 0.2 0.4 0.6 0.8 1.0

X/L

FIG. 4. Matrix viscosity with van Albada limiter for the linear wave
and superbee for the nonlinear waves.
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A/ (PL/RAT,)

—— Exact Solution

soo Nurnerical Solution

L . B 1 !

0.0 0.2 0.4 Q.6 0.8

FIG. 5. Matrix viscosity with superbee for the linear wave and

x/L

van Albada tor the nonlinear waves.

P/ Po/RTL)
o

-— Exact Solution

coo Mumerical Solution

al-
°f
4+
2k

| | L L 1

0.0 0.2 0.4 0.6 08 1.0

FIG. 6. Shu’s third-order scheme with superbee limiter for the lincar

%/L

wave and van Leer limiter for the nonlinear waves, CFL =0.75.

The cases presented until now were with the original four
stage Runge-Kutta coefficients and CFL = 0.75. Raising the
CFL number introduced oscillations. We next tried the first-
order scheme suggested by Shu [ 7] but still got oscillations
when the CFL was larger than one. We then used the third-
order Runge-Kutta scheme suggested by Shu [6]. Using
the same switches for both the linear and nonlinear switches
and these third-order Runge-K utta coefficients resulted in a
sharper profile but some oscillations. Hence, in Fig. 6 we
present the results for Shu’s third-order scheme in time,
using superbee for the lincar field and the van Leer viscasity
for the nonlinear field. Figure 7 presents the same case as
Fig. 6 but with the CFL raised to 0.95. This introduced a
small oscillation near the sonic point but otherwise was very
satisfactory. For all these cases the artificial viscosity was
frozen after the first stage. It is interesting to note that with
the scheme of Lerat and Sides [4] the solution becomes less
oscillatory as the time step is increased. In our last case we
consider the effect of using different variables for the
switches. Until now the switch for the nonlinear fields has
been based on the pressure while the switch for the linear
field has been based on the temperature. We now plot the
results when each characteristic field has an artificial
viscosity switch based on that characteristic variable. In
Fig. 8§ the density is plotted for this case using Shu’s third
order Runge-Kutta coefficients, CFL =10.75, the superbee
limiter for the contact discontinuity based on the linearized

20

18 —— Exact Solution
ooo Numerical Solution

16

14

p/(PL/RAT)

8
¢]
4
2
1 | J— L L
0.0 0.2 0.4 08 c.8 1.0
X/L

FIG. 7. Shu’s third-order scheme with superbee limiter for the linear
wave and van Leer limiter for the nonlinear waves, CFL = 0.95.
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18} ‘ — Exact Sclution

Selution

ooo Numerical

pAPLIRT,)
=

i A ! L L L
0.0 0.2 Q.4 0.6 0.8 1.0
x/L

FIG. 8. Shu’s third-order scheme with superbee limiter for the linear
wave and van Leer limiter for the nonlinear waves based on characteristic
variables.

entropy variable Ap — ¢ 4p, and the van Leer limiter for the
acoustic variables Ap+ pec du and dp — pe Ju. We see that
there is an additional improvement in the resolution of the
contact discontinuity. Here the artificial viscosity was frozen
after the first stage. The evaluation of the artificial viscosity
at each stage made only minor improvements in the
solution compared to the large effect observed using the
van Leer limiter with the standard Runge—Kutta scheme.

The solutions presented are all for the time r=0.2.
Watching the time evolution one sees that there are many
oscillations that occur in the initial breakup of the discon-
tinuity into a shock and a contact. These oscillations dis-
appear as the solution progresses. All the calculations were
done with a time step based on the largest eigenvalue at the
previous time step. Hence, 4¢ varies at each time level. The
result is that the time step in the initial stages of problem is
approximately twice as large as those allowed after the
transient has passed. If one uses a constant time step based
on the long time behavior of the solution then there is a
minor improvement at the sonic point.

We finally consider steady state two-dimensional calcula-
tions, We¢ use multigrid as an acceieration technique to
reach a steady state faster [3]. In all cases we use a FMG
version of multigrid. There are two levels of refinement
meshes beneath the finest mesh to obtain a good starting
condition. Within each mesh a W cycle is used with one
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iteration on the finest mesh and two iterations of the
Runge-Kutta smoother on all coarser meshes. For the high
speed flows the first 100 iterations on the coarsest refine-
ment mesh is done without any multigrid and a small CFL
number. The convergence plots show the residual for the
three grids. Whenever the solution is interpolated to the
next finest grid the residual jumps up.

We first solve for the turbulent flow about a blunt cone
using a Baldwin-Lomax turbulence model at M =250,
a=0. The grid is 400 x 80 and the geometry is shown in
Fig. 9a. In Fig. 9b we plot the pressure and Mach number
along the coordinate line directly in front of the cone. We
choose €=0.05 in (25). There are only three points in the
shock and no overshoots even at this hypersonic speed. If €
is chosen equal to one (i.¢,, original switch (10)} the code
does not converge. In Fig. 9¢c we plot the pressure and Mach
number along the leading edge coordinate line but now with
€=0.90. The results are similar to that previously obtained
but now the upper portion of the shock is rounded. We also
need a larger value of the second and fourth difference dis-
sipation for the algorithm to converge to the steady state. In
Fig. 9e we present the same plot when the Van Albada (1)
switch is used. The sharpness of the shock is similar to the
previous result but the convergence is slowed down. This
seems to be happen because the second difference viscosity
is now turned on only right near the shock.

We next consider laminar transonic flow . about a
NACADDIZ with M, =08, a=1.0. In Figs. 10a and 10b
we plot C,, with € =0.05 and € = 1.00, respectively. We note
that the “TVD” solution €=1{0.05 has completely smeared
the solution, i.c., a TVD-like switch adds too much viscosity
at the weak shock. The solution to this difficulty is to make
the switch depend on the strength of the discontinuity as
advocated in (26}, (27). For the following runs we chose
o =31 In Fig. 10c we plot C, with this variable € and we see
that we recover the € = 1.0 results. To further improve the
quality of the results we use the matrix viscosity and these
results plotted in Fig. 10d show a much sharper shock.
When using a small variable of ¢ the shock is stili smeared
even with the matrix viscosity. To demonstrate that we still
can handle the streng shock case we redo the blunt body
case done above with the same variable €. In Fig. 9d we plot
the same pressure and Mach levels and note that we obtain
the same sharp profile as Fig. 9b. Hence, the variable € does
choose the appropriate amount of dissipation for both
transonic and hypersonic flows, In Figs. 9 and 10e, 10f
we show the convergence rate of p for the hypersonic and
transonic cases respectively.

The matrix viscosity adds approximately 20% to the
total computer time needed to advance one time step. For
time dependent problems this is the total cost of the matrix
viscosity. However, for the steady state problems the
decreased viscosity inherent in the matrix form alse slows
down the convergence to a steady state. The amount of
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degradation is problem dependent but typically one needs
about 20% more iterations to reach the same residual level.
Hence, the total cost of the matrix viscosity is about 40 to
45% for steady state problems, Nevertheless, the matrix
viscosity is still cheaper than most upwind codes. Further
comparisons depend on the details of the upwind code and
the programming aspects. Other examples are presented
in [9].

We again stress that for the hypersonic cases the value of
€ chosen essentially makes the algorithm TVD (in the one-
dimensional scalar sense). However, for the transonic case
the appropriate value of € gives an artificial viscosity well
below that required for a TVD scheme. This demonstrates
that the coefficient of the artificial viscosity or equivalently
the flux limiter should depend on the strength of the
discontinuity, at least for steady calculations.

6. CONCLUSION

« The use of a matrix viscosity allows a central difference
scheme to behave similar to an upwind scheme. By using
the above forms one need not calculate the characteristic
variables and instead one can multiply 14| times a vector
efficiently. This has the disadvantage that the switches, or
flux limiters, cannot easily be based on the characteristic
variables. Instead they are based on physical variables as
pressure or temperature. This makes the choice “physical”
rather than mathematical. More testing is needed to coin-
pare these choices. In most other ways the flux difference
splitting and central differencing with matrix viscosity are
similar. On historical grounds upwind schemes are fre-
quently coupled with an implicit solver while central dif-
ference schemes are advanced with a multistage scheme with
a multigrid acceleration. However, this is not an essential
difference. Flux difference schemes can have difficulties with
slow moving shocks or the “carbuncle phenomena” and
some of the fixes involve adding dissipation to the upwind
scheme (see [5]). Hence, these upwind schemes frequently
involve many of the same fixes and choice of flux limiters
that are implemented in central difference schemes.

+ Hence, using a central difference scheme with an artifi-
cial viscosity we can duplicate most of the accuracy of
upwind TVD schemes. Solving the one-dimensional time
dependent Euler equations we obtain high resolution solu-
tions for the shocks and the contact discontinuity. The main
ingredients are an improved shock locator and a matrix
artificial viscosity. This shock locator can be based on any
of the upwind flux limiters. Superbee is the best for the
contact while either van Leer or van Albada (1} is best for
the nonlinear waves, Further minor improvements can be
obtained by using a high order TVD Runge-Kutta scheme
and basing the switch on the characteristic variables. The
TVB Runge-Kutta schemes is slightly more accurate than
the standard Runge-Kutta schemes.
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« There are major differences between the time depen-
dent problem and the steady state problem. For the time
dependent problem it was necessary for the scheme to be
TVD-like in order to avoid oscillations. However, for the
steady state problem we use a coefficient for the artificial
viscosity that is considerably below that required for the
solution to be TVD and still obtain monotone shocks, espe-
cially if the shock is not very strong. Even for M =250
there are only three points in the shock. TVD schemes
frequently slow down-the convergence to the steady state
unless the flux limiters are carefully constructed. When
using a TVD scheme coupled with a multigrid acceleration
it may be necessary to limit the transfer of the residual to
coarser meshes in the vicinity of shocks. Hence, there is a
need for more work to ¢xtend the TVD theory to steady
state problems and weak shocks.

» For time dependent flows we were not able to use a
CFL greater than one, even though the linear stability of the
Runge—Kutta allowed larger time steps. For the steady state
problems one can use larger time steps. Hence, for steady-
state problems it is efficient to use many stages in the
Runge-Kutta method to increase the CFL stability limit
even though one is not interested in high time accuracy.
Nevertheless, the limitations on the time step for time
dependent problems indicates that even for steady state
problems one should limit the local CFL near shocks to less
than one, at least in the transient phase. This is crucial for
hypersonic fiow.
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